• Форумы
  • Администрирование

Скачать [Udemy] Unsupervised Deep Learning in Python [Lazy Programmer Inc.]

Информация
Цена: 110 РУБ
Организатор: Kail
Записаться в список
Ссылки для скачивания
Скачать
Скачать
Скачать
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
423 631
Реакции
42 081
Монеты
1 191
Оплачено
0
Баллы
0
26.09.2020
  • #SkladchinaVip
  • #1
[Udemy] Unsupervised Deep Learning in Python [Lazy Programmer Inc.]
Ссылка на картинку
Autoencoders + Restricted Boltzmann Machines for Deep Neural Networks in Theano, + t-SNE and PCA
This course is the next logical step in my deep learning, data science, and machine learning series. I’ve done a lot of courses about deep learning, and I just released a course about unsupervised learning, where I talked about clustering and density estimation. So what do you get when you put these 2 together? Unsupervised deep learning!
In these course we’ll start with some very basic stuff - principal components analysis (PCA), and a popular nonlinear dimensionality reduction technique known as t-SNE (t-distributed stochastic neighbor embedding).
Next, we’ll look at a special type of unsupervised neural network called the autoencoder. After describing how an autoencoder works, I’ll show you how you can link a bunch of them together to form a deep stack of autoencoders, that leads to better performance of a supervised deep neural network. Autoencoders are like a non-linear form of PCA.
Last, we’ll look at restricted Boltzmann machines (RBMs). These are yet another popular unsupervised neural network, that you can use in the same way as autoencoders to pretrain your supervised deep neural network. I’ll show you an interesting way of training restricted Boltzmann machines, known as Gibbs sampling, a special case of Markov Chain Monte Carlo, and I’ll demonstrate how even though this method is only a rough approximation, it still ends up reducing other cost functions, such as the one used for autoencoders. This method is also known as Contrastive Divergence or CD-k. As in physical systems, we define a concept called free energy and attempt to minimize this quantity.
Finally, we’ll bring all these concepts together and I’ll show you visually what happens when you use PCA and t-SNE on the features that the autoencoders and RBMs have learned, and we’ll see that even without labels the results suggest that a pattern has been found.
All the materials used in this course are FREE. Since this course is the 4th in the deep learning series, I will assume you already know calculus, linear algebra, and Python coding. You'll want to install Numpy, Theano, and Tensorflow for this course. These are essential items in your data analytics toolbox.
If you are interested in deep learning and you want to learn about modern deep learning developments beyond just plain backpropagation, including using unsupervised neural networks to interpret what features can be automatically and hierarchically learned in a deep learning system, this course is for you.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Поиск по тегу:
Теги
lazy programmer python udemy unsupervised deep learning in python
Похожие складчины
Скачать [Udemy] Cluster Analysis and Unsupervised Machine Learning in Python [Lazy Programmer Inc.]
  • Kail
  • 25.09.2020
0
Ответы
0
Просмотры
352
25.09.2020
Kail
Скачать [Udemy] Unsupervised Machine Learning Hidden Markov Models in Python [Lazy Programmer Inc.]
  • Kail
  • 26.09.2020
0
Ответы
0
Просмотры
314
26.09.2020
Kail
Скачать [Udemy] Data Science: Deep Learning in Python [Lazy Programmer Inc.]
  • Kail
  • 25.09.2020
0
Ответы
0
Просмотры
441
25.09.2020
Kail
Скачать [Udemy] Modern Deep Learning in Python [Lazy Programmer Inc.]
  • Kail
  • 25.09.2020
0
Ответы
0
Просмотры
407
25.09.2020
Kail
Скачать [Udemy] Deep Learning Prerequisites: Linear Regression in Python [Lazy Programmer Inc.]
  • Kail
  • 25.09.2020
0
Ответы
0
Просмотры
397
25.09.2020
Kail
Показать больше складчин

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Регистрация

Войти

Уже зарегистрированы? Просто войдите.

Войти
Поделиться:
Facebook Twitter WhatsApp Электронная почта
  • Форумы
  • Администрирование
  • Русский (RU)
  • Обратная связь
  • Условия и правила
  • Политика конфиденциальности
  • Помощь
Меню
Войти

Регистрация

  • Форумы
    • Новые сообщения
  • Мои складчины
  • Служба поддержки
  • Новые складчины
    • Новые сообщения
    • Последняя активность
    • Новые оценки тем
  • Как зарегистрироваться?